Copy dbnl.report_results(
*,
run: Run ,
column_data: pandas.DataFrame ,
scalar_data: dict[str, Any] | pandas.DataFrame | None = None
) -> None:
report_results
is the equivalent of calling both report_column_results
and report_scalar_results
.
All data should be reported to dbnl at once. Calling dbnl.report_results
more than once will overwrite the previously uploaded data.
Once a Run is closed . You can no longer call report_results
to send data to DBNL.
Copy import dbnl
import pandas as pd
dbnl.login()
proj1 = dbnl.get_or_create_project(name="test_p1")
runcfg1 = dbnl.create_run_config(project=proj1, columns=[{"name": "error", "type": "float"}])
run1 = dbnl.create_run(project=proj1, run_config=runcfg1)
data = pd.DataFrame({"error": [0.11, 0.33, 0.52, 0.24]})
dbnl.report_results(run=run1, column_data=data)
import dbnl
import pandas as pd
dbnl.login()
proj1 = dbnl.get_or_create_project(name="test_p1")
runcfg1 = dbnl.create_run_config(
project=proj1,
columns=[{"name": "error", "type": "float"}],
scalars=[{"name": "rmse": "type": "float"}],
)
run1 = dbnl.create_run(project=proj1, run_config=runcfg1)
data = pd.DataFrame({"error": [0.11, 0.33, 0.52, 0.24]})
dbnl.report_results(run=run1, column_data=data, scalar_data={"rmse": 0.37})