RunConfig
Fields
id
str
The ID of the RunConfig. RunConfig ID starts with the prefix runcfg_
project_id
str
columns
list[dict[str, str]]
A list of column schema specs for the uploaded data, required keys name
and type
, optional key component
and description
. Example:
columns=[{"name": "pred_proba", "type": "float", "component": "fraud-predictor"}, {"name": "decision", "type": "boolean", "component": "threshold-decision"}, {"name": "requests", "type": "string", "description": "curl request response msg"}]
scalars
list[dict[str, str]]
An optional list of scalar schema specs for the uploaded scalar data, required keys name
and type
, optional key component
, description
and greater_is_better
. type
can be int
, float
, category
, boolean
, or string
. component
is a string that indicates the source of the data. e.g. "component" : "sentiment-classifier" or "component" : "fraud-predictor". Specified components must be present in the components_dag
dictionary. greater_is_better
is a boolean that indicates if larger values are better than smaller ones. False indicates smaller values are better. None indicates no preference. An example RunConfig scalars: scalars=[{"name": "accuracy", "type": "float", "component": "fraud-predictor"}, {"name": "error_type", "type": "category"}]
Scalar schema is identical to column schema.
description
str
An optional description of the RunConfig. Descriptions are limited to 255 characters.
display_name
str
An optional display name of the RunConfig.
row_id
list[str]
An optional list of the column names that are used as unique identifiers.
components_dag
dict[str, list[str]]
An optional dictionary representing the direct acyclic graph (DAG) of the specified components. Every component
listed in the columns
schema is present incomponents_dag
.
Supported Functions
Was this helpful?