Create a new dbnl RunConfig
project
columns
A list of column schema specs for the uploaded data, required keys name
and type
, optional key component
, description
and greater_is_better
. type
can be int
, float
, category
, boolean
, or string
. component
is a string that indicates the source of the data. e.g. "component" : "sentiment-classifier" or "component" : "fraud-predictor". Specified components must be present in the components_dag
dictionary. greater_is_better
is a boolean that indicates if larger values are better than smaller ones. False indicates smaller values are better. None indicates no preference.
Example:
columns=[{"name": "pred_proba", "type": "float", "component": "fraud-predictor"}, {"name": "decision", "type": "boolean", "component": "threshold-decision"}, {"name": "requests", "type": "string", "description": "curl request response msg"}]
scalars
NOTE: scalars
is available in SDK v0.0.15 and above.
A list of scalar schema specs for the uploaded data, required keys name
and type
, optional key component
, description
and greater_is_better
. type
can be int
, float
, category
, boolean
, or string
. component
is a string that indicates the source of the data. e.g. "component" : "sentiment-classifier" or "component" : "fraud-predictor". Specified components must be present in the components_dag
dictionary. greater_is_better
is a boolean that indicates if larger values are better than smaller ones. False indicates smaller values are better. None indicates no preference. An example RunConfig scalars: scalars=[{"name": "accuracy", "type": "float", "component": "fraud-predictor"}, {"name": "error_type", "type": "category"}]
Scalar schema is identical to column schema.
description
An optional description of the RunConfig, defaults to None
. Descriptions are limited to 255 characters.
display_name
An optional display name of the RunConfig, defaults to None
. Display names do not have to be unique.
row_id
An optional list of the column names that can be used as unique identifiers, defaults to None
.
components_dag
Column names can only be alphanumeric characters and underscores.
The following type supported as type
in column schema
float
int
boolean
string
Any arbitrary string values. Raw string type columns do not produce any histogram or scatterplot on the web UI.
category
list
Currently only supports list of string values. List type columns do not produce any histogram or scatterplot on the web UI.
The optional component
key is for specifying the source of the data column in relationship to the AI/ML app subcomponents. Components are used in visualizing the components DAG.
The components_dag
dictionary specifies the topological layout of the AI/ML app. For each key-value pair, the key represents the source component, and the value is a list of the leaf components. The following code snippet describes the DAG shown above.
A new dbnl RunConfig
RunConfig with scalars
The this RunConfig is associated with.
See the section below for more information.
An optional dictionary representing the direct acyclic graph (DAG) of the specified components, defaults to None
. Every component
listed in the columns
schema must be present in the components_dag
. Example: components_dag={"fraud-predictor": ["threshold-decision"], 'threshold-decision': []}
See the section below for more information.
Equivalent of pandas . Currently only supports category of string values.